Synthesis of Butadiene via Vinyl-Ethylene Combination at a Diruthenium Centre

Gregg C. Bruce, Selby A. R. Knox,* and Andrew J. Phillips Department of Inorganic Chemistry, The University, Bristol BS8 1TS, UK

Treatment of the μ -vinyl cation [Ru₂(CO)(MeCN)(μ -CO)(μ -CH=CH₂)(η -C₅H₅)₂]⁺ with ethylene (1 atm, 25 °C) gives two isomers of [Ru₂(CO)₂(μ -H)(μ -CH₂=CHCH=CH₂)(η -C₅H₅)₂]⁺, containing (*S*)-*cis*- or (*S*)-*trans*-butadiene; deprotonation is effected with KOH/ethanol to afford the neutral (*S*)-*trans*-butadiene complex [Ru₂(CO)₂(μ -CH₂=CHCH=CH₂)(η -C₅H₅)₂].

It has recently been suggested that surface vinyl groups may play a significant role in the carbon chain growth which characterises the Fischer–Tropsch Synthesis.¹ In an extension of our studies on the combination of hydrocarbon species at dinuclear metal centres,^{2,3} we have investigated the reactivity of μ -vinyl at a diruthenium centre, discovering that it does indeed readily take part in carbon–carbon bond formation processes. We report here on the combination of μ -vinyl with ethylene, which occurs at room temperature and atmospheric pressure to yield co-ordinated butadiene.

Addition of one equivalent of Me₃NO to an acetonitrile solution of the μ -vinyl complex [Ru₂(CO)₂(μ -CO)(μ -CH=CH₂)(η -C₅H₅)₂][BF₄]⁴ generates the acetonitrile deriva-tive [Ru₂(CO)(MeCN)(μ -CO)(μ -CH=CH₂)(η -C₅H₅)₂]⁺ (1)[†] quantitatively. Bubbling ethylene through a dichloromethane solution of this species at room temperature for 3 h results in the formation of an approximately 50:50 mixture of the isomeric (S)-cisand (S)-trans-butadiene complexes $[Ru_2(CO)_2(\mu-H)(\mu-CH_2=CHCH=CH_2)(\eta-C_5H_5)_2]^+$ (4a, b),† isolated in over 90% yield. Crystals of pure (4b) were separated but these proved unsuitable for an X-ray diffraction study. However, the structures of the isomers were clearly indicated by their ¹H and ¹³C NMR spectra, in comparison with those of known complexes with bridging (S)-cis- and (S)-trans-butadiene.⁵⁻⁸ Moreover, deprotonation of the mixture with KOH in ethanol gave the neutral (S)-trans-butadiene complex $[Ru_2(CO)_2(\mu-CH_2=CHCH=CH_2)(\eta-C_5H_5)_2]$ (5) in 85% yield, previously obtained by us from the reaction of butadiene with a diruthenium precursor and structurally established by X-ray diffraction.8 The deprotonation is irreversible; treatment of (5) with HBF₄ does not give (4).

The (S)-cis- and (S)-trans-butadiene ligands in (**4a**) and (**4b**) are associated with $\operatorname{Ru}_2(\operatorname{CO})_2(\eta-\operatorname{C}_5\operatorname{H}_5)_2$ units which also adopt cis and trans stereochemistry, respectively. NMR studies show that the isomers do not interconvert in solution, but the high yield of (**5**) obtained on deprotonation of the mixture reveals that isomerisation of (S)-cis-butadiene to the S-trans form must occur during this process, presumably via a temporary dissociation of one of the double bonds to allow the required rotation about both the central C-C bond of the hydrocarbon and the metal-metal bond.

In the light of our recent studies of the reactions of ethylene² and allene³ with acetonitrile complexes the first step in the formation of (4a) and (4b) will be the displacement of labile acetonitrile from (1), to give the transient μ -vinyl/ethylene complex (2), as shown in Scheme 1. No spectroscopic evidence was obtained for this species, indicating that carbon-carbon bond formation occurs rapidly once ethylene is co-ordinated. A labelling study employing (1) enriched in ${}^{13}C$ at the $\alpha(\mu)$ -carbon of the vinyl revealed that the label progressed to an inner diene carbon of (4a) and (4b) (see asterisks in Scheme 1). Likewise, use of a μ -CD=CH₂ vinyl ligand gave only µ-CH₂=CDCH=CH₂ products. These observations are consistent only with carbon-carbon bond formation between ethylene and the $\alpha(\mu)$ -vinyl carbon. The process can be viewed as a reductive elimination $(2Ru-C \rightarrow C-C)$, which will create the dimetallacycle (3) containing a sixteen-electron ruthenium centre. The latter then promotes β -elimination of an originally

Scheme 1. i, C_2H_4 , 1 atm, 25°C; ii, reductive-elimination; iii, β -elimination; iv, KOH, ethanol.

ethylenic hydrogen, restoring electronic saturation to the dimetal centre and generating the products (4a) and (4b) directly. There are two such β -hydrogens in (3) and butadiene arises co-ordinated in either the *S*-cis or *S*-trans mode depending on which of these hydrogens undergoes β -elimination. The approximately 50:50 mixture of (4a) and (4b) produced shows that there is no significant discrimination.

It is noteworthy that the μ -vinyl precursor of (1) is obtained by oxidation of the ethylene complex $[Ru_2(CO)_3(C_2H_4)(\eta-C_5H_5)_2]$,² so that what is described here completes a sequence for the coupling of two ethylene molecules at a dinuclear metal centre.

The ease with which ethylene/vinyl combination occurs at a diruthenium centre contrasts sharply with ethylene/methylene combination, which was observed only above 200 °C.² When this is considered in association with our recent observation that μ -methylene combines with allene at room temperature,³ a picture is beginning to emerge. This is that carbon-carbon bond formation at a dinuclear metal centre, a reductive

[†] The new complexes were characterised by elemental analyses and by mass, IR (CH₂Cl₂ solution), and NMR (¹H and ¹³C, J in Hz, CD₂Cl₂ solution unless otherwise stated) spectra. Selected data for (1): orange powder, v(CO) 2001s and 1849m cm⁻¹; ¹H NMR & 2.34 (s, 3H, MeCN), 3.27 (d, J 12, 1H of CH₂), 5.12 (s, 5H, C₅H₅), 5.66 (s, 5H, C₅H₅), 5.79 (d, J7.5, 1H of CH₂), and 10.87 (dd, J7.5, 12, 1H, µ-CH); ¹³C{¹H} NMR δ 4.86 (MeCN), 66.53 (CH₂), 85.71 (C₅H₅), 92.44 (C₅H₅), 128.9 (MeCN), 168.7 (μ-CH), 197.5 (CO), and 227.6 (μ-CO). (4a): yellow powder, v(CO) 2019 cm⁻¹; ¹H NMR δ -14.74 (s, 1H, µ-H), 1.24 (m, 2H), 3.28 (m, 2H), 4.82 (m, 2H), and 5.49 (s, 10H); ¹³C{¹H} NMR (in CD₃CN) δ 30.3 (2CH₂), 46.7 (2CH), 86.4 (2C₅H₅), and 204.6 (2CO). (4b): yellow powder, v(CO) 1996s cm^{-1}; 1H NMR δ -18.58 (s, 1H, µ-H), 2.38 (m, 2H), 2.67 (m, 2H), 3.67 (m, 2H), 5.47 (s, 10H); ¹³C{¹H} NMR (in CD₃CN) & 31.8 (2CH₂), 53.1 (2CH), 88.6 $(2C_5H_5)$, 200.8 (2CO). (5) (for comparison): v(CO) (in cyclohexane) 1914 cm⁻¹; ¹H NMR (in CDCl₃) & 1.69 (m, 2H), 1.73 (m, 2H), 2.63 (m, 2H), and 5.10 (s, 10H); ¹³C{¹H} NMR (in CDCl₃) δ 23.2 (2CH₂), 48.1 (2CH), 84.5 (2C₅H₅), and 206.1 (2CO)

elimination process, creates an unsaturated 32-electron centre and is only favoured when the saturated 34-electron configuration can be readily regained. Co-ordinated allene has sufficient π -electrons to allow this, while for vinyl/ethylene combination the β -elimination process is a source of two additional electrons. β -Elimination is also possible for the dimetallacyclopropane intermediate which will be formed upon ethylene/methylene combination, but an unusual µ-allyl ligand would result. The pathway still appears to exist, in that propene is generated at >200 °C, but it is clearly a high energy one.

The study of diene synthesis at a diruthenium centre is being extended to cover a range of alkenes and substituted vinyl ligands. Thus, the reaction of (1) with styrene gives the 1-phenylbutadiene analogues of (4a) and (4b), in an S-cis: Strans ratio of 1:3.5. It is clear from this that (a) carbon-carbon bond formation occurs preferentially with the unsubstituted carbon of the alkene and (b) there is now discrimination between the two possible β -hydrogen elimination processes, presumably on steric grounds in each case.

We thank the University of Bristol for the award of an E.S. & A. Robinson Scholarship (to A. J. P.), the SERC for support, and Johnson Matthey p.l.c. for a loan of ruthenium trichloride.

Received, 5th February 1990; Com. 0/00534G

References

- 1 J. M. Martinez, H. Adams, N. A. Bailey, and P. M. Maitlis, J. Chem. Soc., Chem. Commun., 1989, 286.
- 2 N. M. Doherty, J. A. K. Howard, S. A. R. Knox, N. J. Terrill, and M. I. Yates, J. Chem. Soc., Chem. Commun., 1989, 638.
- 3 M. J. Fildes, S. A. R. Knox, A. G. Orpen, M. L. Turner, and M. I. Yates, J. Chem. Soc., Chem. Commun., 1989, 1680.
- 4 A. F. Dyke, S. A. R. Knox, M. J. Morris, and P. J. Naish, J. Chem. Soc., Dalton Trans., 1983, 1417.
- 5 M. Tachikawa, J. R. Shapley, R. C. Haltiwanger, and C. G. Pierpoint, J. Am. Chem. Soc., 1976, 98, 4651.
- 6 K. H. Franzreb and C. G. Kreiter, Z. Naturforsch., Teil B, 1982, 37, 1058.
- 7 J. A. King and K. P. C. Vollhardt, *Organometallics*, 1983, 2, 684. 8 G. S. Lewandos, S. A. R. Knox, and A. G. Orpen, *J. Chem. Soc.*, Dalton Trans., 1987, 2703.